
© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Speaker: Matt Denapoli

Hostess: Kara Sullivan
Jointly presented by DevNet & NetAcad

Session 5: The New Toolbox of a Network Engineer

Programmability Webinar
Series with DevNet

13 February, 2019
© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

2© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Welcome to the 5th
session of the

Programmability with
Cisco DevNet
webinar series

• Use the Q and A panel to ask
questions.

• Use the Chat panel to
communicate with attendees
and panelists.

• A link to a recording of the
session will be sent to all
registered attendees.

• Please take the feedback
survey at the end of the
webinar.

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidential© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

The Webinar Series

Date Topic
Oct’18 Networking with Programmability is Easy

Oct’18 A Network Engineer in the Programmable Age

Nov’18 Software Defined Networking and Controllers

Jan’19 Adding API Skills to Your Networking Toolbox

Feb’19 The New Toolbox of a Networking Engineer

Mar’19 Program Networking Devices using their APIs

Apr’19 Before, During, and After a Security Attack

May’19 Play with Linux & Python on Networking Devices

Jun’19 Automate your Network with a Bot

All Series Details can be Found @ http://bit.ly/devnet2

http://bit.ly/devnet2

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

The Webinar Series – Raffle & Certificates

Raffle

 We will be raffling off a total of 15 Amazon gift cards in the amount of $25 US dollars at the end of this

series.*

 10 Amazon gift cards in the amount of $25 US dollars raffled off to everyone who participates in all of the

live sessions

 5 Amazon gift cards in the amount of $25 US dollars raffled off to everyone who participates in all of the

sessions by either attending the live sessions or viewing/downloading the recording (can be a

combination of the two in this raffle).

* Please note that this is a raffle and not everyone who qualifies will receive a gift card. There will be a total of 15 winners.

Certificate of Participation

 There will be an opportunity to sign up for a Certificate of Participation at the end of this series.

 To qualify, you must have participated in all sessions of the series.

 You can do this by attending the live sessions, viewing the recordings, or a combination of the two.

 Certificates will not be given out for individual sessions, but for the series as a whole.

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Joining You
Today:

Matt Denapoli
Developer Evangelist
Cisco DevNet

DevNet Developer Advocate

Matthew
DeNapoli

Session 5
The New Programmable Toolbox of a
Network Engineer

@theDeNap

Common Challenges

Slower Issue ResolutionDifficult to Integrate and
Manage

Difficult to Secure

Ever increasing number of
users and endpoint types

Increase in complexity to increase
scale

Multiple steps,
user credentials, complex

interactions

Multiple touch-points

Separate user policies for
wired and wireless networks

Unable to find users
when troubleshooting

Traditional Networks Cannot Keep Up!

Network as a Platform Considerations
Where to Start?

Powered By Intent. Informed by Context.

Digital Business

SecurityMobile IoT

Network

The Network Intuitive = Intent-based Networking

Activation

Translation

Assurance

Orchestrate policies &

configure systems

Capture business intent, translate

to policies, and check integrity

Continuous verification, insights

& visibility, and corrective actions

Agenda

• Why Python?

• Using the Python Interpreter

• Basic Python Syntax

• Collections and Loops

• Script Structure and Execution

learninglabs.cisco.com/modules/intro-python

12

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

The Value-Proposition for APIs

request

response OK!

>>> do(“repetitious work…”)

Done.

Request actions be performed

Get information

Store information

13

Application Programming Interface (API)

“It’s a way for two pieces of
software to talk to each other”

14

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

The Value-Proposition for Programmability

Coding is the process of writing down instructions, in a language a
computer can understand, to complete a specific task.

Q: What task?
A: Your task.

for switch in my_network:

for interface in switch:

if interface.is_down() and interface.last_change() > thirty_days:

interface.shutdown()

interface.set_description("Interface disabled per Policy")

15

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

What Changed?

API & Language Maturity

RESTful APIs

Expressive Modern Languages

Online Communities

Open Source

Social Code Sharing (GitHub)

Public Package Repositories

$ pip install requests

Collecting requests

Using cached

<-- output omitted for brevity -->

$ python

>>> import requests

>>> requests.get("https://api.github.com")

<Response [200]>

You can get powerful things done with relatively small amounts of

code!

16

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Why Python?

• Domain Applicability
Established online DevOps Community

• Power and Flexibility
Create & Work With: Shell Scripts, Back-end Web APIs, Databases, Machine Learning, …

• Platform Flexibility
Run Your Code: Laptop, Server, VM, Container, Cloud, Cisco IOS Device

• We Like It!
We have: Laptop Stickers, T-Shirts, Social Profiles, and Emotional Connections to Our Code

17

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Python Scripts

Text Files (UTF-8)

May contain Unicode
Some editors / terminals don’t
support Unicode

Use any Text Editor
Using a Python-aware editor
will make your life better

No Need to Compile Them

18

Using a Python Interpreter

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

What interpreter are you using?

python

python2

python3

python3.5

python3.6

other

Know Thy Interpreter

What version is it?

$ python -V

Where is it?

$ where command

20

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Directory Structure

Usually associated with a Project

An isolated environment for
installing and working with
Python Packages

What is a Virtual Environment?

$ python3 -m venv venv

$

$ tree -L 1 venv/

venv/

├── bin

├── include

├── lib

└── pyvenv.cfg

$

$ source venv/bin/activate

(venv) $

21

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Activating a Python Virtual Environment

•$ source venv/bin/activate

•(venv) $

•(venv) $

•(venv) $ deactivate

•$

source environment-name/bin/activate

 The activation script will modify your prompt.

 Inside a virtual environment your interpreter will always be `python`.

22

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

• Included with Python v3+
Coupled with a Python installation;
may be called pip3 outside a venv

• Uses the open PyPI Repository
Python Package Index

• Installs packages and their
dependencies

• You can post your packages to
PyPI!

PIP Installs Packages

(venv) $ pip install requests

Collecting requests

Downloading

<-- output omitted for brevity -->

Installing collected packages: idna,

certifi, chardet, urllib3, requests

Successfully installed certifi-

2018.4.16 chardet-3.0.4 idna-2.6

requests-2.18.4 urllib3-1.22

(venv) $

23

https://pypi.org/

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Using your Python Interpreter

How to… Command

Access the Python Interactive Shell $ python

Running a Python script $ python script.py

Running a script in ‘Interactive’ mode
Execute the script and then remain in the Interactive Shell

$ python -i script.py

24

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Python’s Interactive Shell

Accepts all valid Python statements

Use It To:

 Play with Python syntax

 Incrementally write Code

 Play with APIs and Data

(venv) $ python

Python 3.6.5 (default, Apr 2 2018, 15:31:03)[GCC 4.8.5 20150623 (Red Hat 4.8.5-16)] on

linuxType "help", "copyright", "credits" or "license" for more information.

>>>

To Exit:

Ctrl + D or exit()

25

Basic Python Syntax

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Python

type()

Values

(examples)

int -128, 0, 42

float -1.12, 0, 3.14159

bool True, False

str “Hello 😎”
Can use ‘’, “”, and “”””””

bytes b”Hello \xf0\x9f\x98\x8e”

Basic Data Types

>>> type(3)

<class ‘int’>

>>> type(1.4)

<class ‘float’>

>>> type(True)

<class ’bool’>

>>> type("Hello")

<class ’str’>

>>> type(b"Hello")

<class ‘bytes’>

27

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Math Operations

Addition: +

Subtraction: -

Multiplication: *

Division: /

Floor Division: //

Modulo: %

Power: **

Numerical Operators

>>> 5 + 2

7

>>> 9 * 12

108

>>> 13 / 4

3.25

>>> 13 // 4

3

>>> 13 % 4

1

>>> 2 ** 10

1024

28

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Names

• Cannot start with a number [0-9]

• Cannot conflict with a language
keyword

• Can contain: [A-Za-z0-9_-]

• Recommendations for naming
(variables, classes, functions, etc.) can
be found in PEP8

Created with the = assignment
operator

Can see list of variables in the
current scope with dir()

Variables

>>> b = 7

>>> c = 3

>>> a = b + c

>>> a

10

>>> string_one = "Foo"

>>> string_two = "Bar"

>>> new_string = string_one + string_two

>>> new_string

'FooBar'

29

https://www.python.org/dev/peps/pep-0008/

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Use . (dot) syntax to access
“things” inside an object.

Terminology

When contained inside an object, we
call…

Variable  Attribute

Function  Method

In Python, Everything is an Object!

>>> a = 57

>>> a.bit_length()

6

>>> "WhO wRoTe THIs?".lower()

'who wrote this?'

Check an object’s type with type(object)
Look inside an object with dir(object)

30

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

String Operations

Concatenation: +

Multiplication: *

Some Useful String Methods

Composition: “{}”.format()

Splitting: “”.split()

Joining: “”.join()

Working with Strings

>>> "One" + "Two"

'OneTwo'

>>> "Abc" * 3

'AbcAbcAbc'

>>> "Hi, my name is {}!".format("Chris")

'Hi, my name is Chris!'

>>> "a b c".split(" ")

['a’, 'b’, 'c']

>>> ",".join(['a’, 'b’, 'c'])

'a,b,c'

31

>>> print(‘a’, ‘b’, ‘c’)

a b c

>>> i = input(“Enter a Number: ”)

Enter a Number: 1

>>> int(i)

1

Basic I/O

Get Input with input()

• Pass it a prompt string

• It will return the user’s input as a string

• You can convert the returned string to
the data type you need int(), float(), etc.

Display Output with print()
• Can pass multiple values

• It will concatenate those values with
separators in between (default =
spaces)

• It will add (by default) a newline (‘\n’) to
the end

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Syntax:
if expression1:

statements…
elif expression2:

statements…
else:

statements…

 Indentation is important!

 4 spaces indent recommended

 You can nest if statements

Conditionals

Comparison Operators:

Less than <

Greater than >

Less than or equal to <=

Greater than or equal to >=

Equal ==

Not Equal !=

Contains element in

Combine expressions with: and, or

Negate with: not

33

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

>>> b = 5

>>> if b < 0:

... print("b is less than zero")

... elif b == 0:

... print("b is exactly zero")

... elif b > 0:

... print("b is greater than zero")

... else:

... print("b is something else")

...

b is greater than zero

Conditionals | Examples

>>> words = "Foo Bar"

>>> if "Bar" in words:

... print("words contains 'Bar'")

... elif "Foo” in words:

... print("words contains 'Foo'")

...

words contains 'Bar'

34

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Modularize your code

• Defining your own Functions

• (optionally) Receive arguments

• (optionally) Return a value

Syntax:

def function_name(arg_names):

statements…

return value

...

function_name(arg_values)

Functions | Don’t Repeat Yourself

>>> def add(num1, num2):

... result = num1 + num2

... return result

...

>>>

>>> add(3, 5)

8

>>> def say_hello():

... print("Hello!")

>>>

>>> say_hello()

Hello!

35

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Data Structures / Collection Data Types

Name
type()

Notes Example

list • Ordered list of items

• Items can be different data types

• Can contain duplicate items

• Mutable (can be changed after created)

[‘a’, 1, 18.2]

tuple • Just like a list; except:

• Immutable (cannot be changed)

(‘a’, 1, 18.2)

dictionary
dict

• Unordered key-value pairs

• Keys are unique; must be immutable

• Keys don’t have to be the same data type

• Values may be any data type

{“apples”: 5,
“pears”: 2,
“oranges”: 9}

36

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Working with Collections

Name
type()

Creating Accessing
Indexing

Updating

list l = [‘a’, 1, 18.2] >>> l[2]
18.2

>>> l[2] = 20.4
>>> l
[‘a’, 1, 20.4]

tuple t = (‘a’, 1, 18.2) >>> t[0]
‘a’

You cannot update tuples after they have been

created.

dict d = {“apples”: 5,
“pears”: 2,
“oranges”: 9}

>>> d[“pears”]
2

>>> d[“pears”] = 6
>>> d
{“apples”: 5, “pears”: 6, “oranges”:
9}

37

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Some useful dictionary methods:

{}.items()

{}.keys()

{}.values()

There are many more! 😎

Dictionary Methods

>>> d = {"a": 1, "b": 2, "c": 3}

>>> d.items()

dict_items([('a’,1), ('b’,2), ('c',3)])

>>> d.keys()

dict_keys(['a’, 'b’, 'c’])

>>> d.values()

dict_values([1, 2, 3])

38

https://docs.python.org/3/library/stdtypes.html#dict

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Conditional Loops

while logical_expression:

statements…

Iterative Loops

for individual_item in
iterator:

statements…

Loops

>>> i = 0

>>> while True:

... print(i)

... i += 1

...

0

1

2

3

4

>>> names = ["chris", "iftach", "jay"]

>>> for name in names:

... print(name)

...

chris

iftach

jay

39

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Q: What if you wanted to break
out a collection to separate
variables?

A: Unpack them!

Unpacking

>>> a, b, c = [1, 2, 3]

>>> a

1

>>> b

2

>>> c

3

40

>>> for fruit, quantity in fruit.items():

... print("You have {} {}.".format(quantity, fruit))

...

You have 5 apples.

You have 2 pears.

You have 9 oranges.

Iterating through a Dictionary

• Use the dictionary .items() method,
which returns a “list of tuples”

• Unpack each tuple into variable
names of your choosing to use within
your block of statements

Method returns dictionary
items as a list of (key,
value) tuples, which the
for loop will iteratively
unpack into your
variable names.

Go Forth and CODE!

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Questions?

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Want to Learn More About Python?

Enroll at: http://bit.ly/pythonessentialscourse

• Free online self-

paced course

• 70 Hours

• Level:

Intermediate

• No prior

knowledge of

programming is

required

http://bit.ly/pythonessentialscourse

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidential© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Next DevNet Webinar: 20 March 2019

Date Topic
Oct’18 Networking with Programmability is Easy

Oct’18 A Network Engineer in the Programmable Age

Nov’18 Software Defined Networking and Controllers

Jan’19 Adding API Skills to Your Networking Toolbox

Feb’19 The New Toolbox of a Networking Engineer

Mar’19 Program Networking Devices using their APIs

Apr’19 Before, During, and After a Security Attack

May’19 Play with Linux & Python on Networking Devices

Jun’19 Automate your Network with a Bot

All Series Details can be Found @ http://bit.ly/devnet2

http://bit.ly/devnet2

