vilra)ne Networking
CISCOo Academy

Programmability Webinar
Series with DevNet

Session 5: The New Toolbox of a Network Engineer

Speaker: Matt Denapoli

Hostess: Kara Sullivan
Jointly presented by DevNet & NetAcad

13 February, 2019 ;reserved. Cisco Confidentia

Welcome to the 5th
session of the

Programmability with
Cisco DevNet
webinar series

el]l
Cisco

« Use the Q and A panel to ask

guestions.

« Use the Chat panel to

communicate with attendees
and panelists.

« Alink to a recording of the

session will be sent to all
registered attendees.

- Please take the feedback

survey at the end of the
webinar.

The Webinar Series

Oct’18 Networking with Programmability is Easy
Oct’18 A Network Engineer in the Programmable Age
Nov’'18 Software Defined Networking and Controllers
Jan’19 Adding API Skills to Your Networking Toolbox
) Feb’19 The New Toolbox of a Networking Engineer
Mar’19 Program Networking Devices using their APIs
Apr'19 Before, During, and After a Security Attack
May’19 Play with Linux & Python on Networking Devices
Jun’19 Automate your Network with a Bot

All Series Detalils can be Found @ http://bit.ly/devnet2

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

http://bit.ly/devnet2

The Webinar Series - Raffle & Certificates

Raffle

v We will be raffling off a total of 15 Amazon gift cards in the amount of $25 US dollars at the end of this
series.*

v 10 Amazon gift cards in the amount of $25 US dollars raffled off to everyone who participates in all of the
live sessions

v' 5 Amazon gift cards in the amount of $25 US dollars raffled off to everyone who participates in all of the
sessions by either attending the live sessions or viewing/downloading the recording (can be a
combination of the two in this raffle).

* Please note that this is a raffle and not everyone who qualifies will receive a gift card. There will be a total of 15 winners.

Certificate of Participation

v There will be an opportunity to sign up for a Certificate of Participation at the end of this series.
v To qualify, you must have participated in all sessions of the series. ‘
v You can do this by attending the live sessions, viewing the recordings, or a combination of the two.
v’ Certificates will not be given out for individual sessions, but for the series as a whole.

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

-~

olning You

‘oday:

Matt Denapoli
Developer Evangelist
Cisco DevNet

e
CISCO

Session 5

The New Programmable
Network Engineer

Matthew

DeNapoli ¥ @theDeNap

DevNet Developer Advocate

Stone Age

Spanning Tree
VLANs

Bronze Age
Routing Protocols
WAN Design
IP-magedon

The Renaissance

Programmable Age

SDN
OpenFlow
Controllers

Overlays
MP-BGP
VXLAN
Micro-Segmentation
White Box

The Four Ages of Networking.....

Cloud
Python
REST / APIs
NETCONF / YANG
“Fabrics”

Network Function
Virtualization (NFV)

Containers
DevOps
NetDevOps!

Common Challenges

i o

Difficult to Secure Difficult to Integrate and Slower Issue Resolution
Manage

Ever increasing number of Multiple steps, Separate user policies for
users and endpoint types user credentials, complex wired and wireless networks

Increase in complexity to increase INigrEenans Unable to find users

scale Multiple touch-points when troubleshooting

Traditional Networks Cannot Keep Up!

Network as a Platform Considerations
Where to Start?

&

CCCCC

FASTER) @
INNOVATION
Insights & . o
Experiences] @ @
Analytics 0 \ Open APls

gggggED Mobility 9 Oo /® e 0 Multi-Cloud

COMPLEXITY _ Polic
Automation Automation icy
& Assurance

Security @
LOWER RISK ®® e@

Security & Virtualization

Compliance e @

The Network Intuitive = Intent-based Networking

Digital Business Network
Translation
.. Activation
@ I Orchestrate policies &
configure systems
00® - &

. _ Assurance
Mobile Secunty loT Continuous verification, insights

& visibility, and corrective actions

Capture business intent, translate
to policies, and check integrity

Powered By Intent. Informed by Context.

Agenda

Why Python?

* Using the Python Interpreter

« Basic Python Syntax

* Collections and Loops

« Script Structure and Execution

© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidentia 11

earninglabs.cisco.com/modules/intro-python

Programming Fundamentals
Don't know Python? We got you covered. We'll cover all the essentials you need to get started, work through the labs and complete

the Missions! From intro an intro to Git to parsing JSON with Python, you'll be coding in no time.
@ 2 Hours 15 Minutes

@ Intro to Coding and APIs In Progress
| design and manage networks of all sizes. | use IEEE 802.1w, IPv4, IPv6, OSPF, and BGP to build communications networks that would make Bob Kahn and Vint Cerf proud. Why

should | learn to code?

@ A Brief Introduction to Git Completed
Clone, branch, commit... We aren't talking about your family tree. Learn how to use git to download, edit and revise source code!

@ Intro to Python - Part 1 In Progress
Basic data types, variables, conditionals and functions - we'll teach you the building blocks on which all great apps are built.

@ Intro to Python - Part 2
Python is an “b ies included" programming language. Learn about a few of Python's powerful built-in container data types and how to use loops to get your

computer to do repetitious work for you.

@ Parsing JSON with Python Completed
Use this basic template to write educational content for DevNet Express learning labs.

Continue Module

Hmm
Cisco

The Value-Proposition for APls

>>> do(“repetitious work..”) m‘
Done.
response OK!

v"Request actions be performed

D / Get information

v Store information

Hmm
Cisco

el
CISCO [lWI © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 13

“It's a way for two pieces of
software to talk to each other”

Application Programming Interface (API)

|||||||
CCCCC

The Value-Proposition for Programmability

Coding is the process of writing down instructions, in a language a
computer can understand, to complete a specific task.

Q: What task?
A: Your task.

for switch in my_network:
for interface in switch:
if interface.is_down() and interface.last_change() > thirty_days:
interface.shutdown()

interface.set_description()

Hmm
CiIsco

el
CISCO [lWI © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 15

What Changed?

API & Language Maturity gl nstEll reglissis
Collecting requests
v RESTful APIs Using cached

<-- output omitted for brevity -->
$ python
>>> import requests

v Expressive Modern Languages

Online Communities

>>> requests.get(
v Open Source <Response [200]>

v Social Code Sharing (GitHub)
v Public Package Repositories

You can get powerful things done with relatively small amounts of
code!
dfuafn

el
CISCO [lWI © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 16

Why Python?

Domain Applicability
Established online DevOps Community

Power and Flexibility
Create & Work With: Shell Scripts, Back-end Web APls, Databases, Machine Learning, ...

Platform Flexibility
Run Your Code: Laptop, Server, VM, Container, Cloud, Cisco IOS Device

We Like It!
We have: Laptop Stickers, T-Shirts, Social Profiles, and Emotional Connections to Our Code

Hmm
Cisco

el
CISCO [lvcl © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 17

ﬁ Python Scripts

CISCO

Cisco [l Vfl

Text Files (UTF-8)

May contain Unicode
Some editors / terminals don't
support Unicode

Use any Text Editor
Using a Python-aware editor
will make your life better

No Need to Compile Them

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 18

Using a Python Interpreter

.........

Know Thy Interpreter

What interpreter are you using? What version is it?
Qpython $ python -v
dpython?2
dpython3
Qpython3.5 Where is it?
Qpython3.6 $ where command
Qother

Hmm
Cisco

el
CISCO [lWI © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 20

What is a Virtual Environment?

» Directory Structure python3 -m venv venv
> Usually associated with a Project trie -L 1 venv/
venv
» An isolated environment for — bin
installing and working with ||:]?Emde
Python Packages R

source venv/bin/activate
(venv)

CISCO

CISCO [lWI © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 21

Activating a Python Virtual Environment

source environment-name/bin/activate

~ The activation script will modify your prompt.
» Inside a virtual environment your interpreter will always be “python’.

source venv/bin/activate
(venv)
(venv)

(venv) deactivate

CISCO

CISCO [lvel © 2019 Cisco and/or i

its affiliates. All rights reserved. Cisco Public 22

PIP Installs Packages

* Included with Python v3+
Coupled with a Python installation;
may be called p1p3 outside a venv

« Uses the open PyPIl Repository
Python Package Index

« Installs packages and their
dependencies

- You can post your packages to
PyPI!

e
Cisco

Cbcohbey’

(venv) pip install requests
Collecting requests

Downloading

<-- output omitted for brevity -->

Installing collected packages: 1idna,
certifi, chardet, urllib3, requests
Successfully installed certifi-

2018.4.16 chardet-3.0.4 idna-2.6
requests-2.18.4 urllib3-1.22
(venv)

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

23

https://pypi.org/

Using your Python Interpreter

How to... Command

Access the Python Interactive Shell $ python

Running a Python script $ python script.py
Running a script in ‘Interactive’ mode $ python -1 script.py

Execute the script and then remain in the Interactive Shell

CISCO

CISCO [lWI © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 24

Python’s Interactive Shell

Accepts all valid Python statements

Use It To: To Exit:
v Play with Python syntax ctrl + D
v Incrementally write Code
v Play with APIs and Data

or exit(Q

(venv) $ python
Python 3.6.5 (default, Apr 2 2018, 15:31:03)[GCC 4.8.5 20150623 (Red Hat 4.8.5-16)] on

TinuxType "help", "copyright", "credits" or "license'

' for more information.

>>>

Hmm
CiIsco

Cbcohbzy’

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 25

Basic Python Syntax

|||||||||
CCCCC

Basic Data Types

Python Values
type() (examples)
int -128, 0, 42
float -1.12, 0, 3.14159
bool True, False
str “Hello ©”
Can use [1 ” “”’ and £6€37333333)
bytes b”Hello \xfO\x9f\x98\x8e”

e
Cisco

Cbcohbey’

>>>
<class

>>>
<class

>>>
<class

>>>
<class

>>>
<class

€))

“int’>

(1.4
‘“float’>

(True)
"bool’>

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

27

Numerical Operators

Math Operations ;>>
Addition: + >>> 9 * 12
Subtraction: - 108

o _ >> 13 / 4
Multiplication: * 3.25
Division: / - 13774
Floor Division: // >>> 13 % 4

. 1
Modulo: % e 3 S T
Power: L 1024

Hmm
CiIsco

el
CISCO [lWI © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 28

Variables

Names
« Cannot start with a number [0-9]
« Cannot conflict with a language

keyword -

« Can contain: [A-Za-z0-9 -] >>> string_one =

« Recommendations for naming >>> string_two = _ :
(variables, classes, functions, etc.) can se RSN = SErTIELeNE < B gkl

be found in PEP8 - neWTstﬂ ng
FooBar

Created with the = assignment
operator

Can see list of variables in the
current scope with dir()

Hmm
CiIsco

el
CISCO [lWI © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 29

https://www.python.org/dev/peps/pep-0008/

In Python, Everything is an Object!

Use . (dot) syntax to access >>> a ;_571 ,
“things” inside an object. o S NEenet O

>>>
'who wrote this?'

Terminology

When contained inside an object, we
call...

Variable - Attribute
Function = Method

Check an object’s type with type(object)
Look inside an object with dir(object)

e
Cisco

el
CISCO [lWI © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 30

Working with Strings

String Operations
Concatenation: +
Multiplication: *

Some Useful String Methods

Composition: “{}”.format()
Splitting: “7.split(Q)
Joining: “”.j301n()

PR

Cbcohbey’

>>>
'OneTwo'

>>> S
'AbcAbcAbc'

>>> {}!".format(
'"Hi, my name is Chris!'

>>> .split())
[|a7’ |b’, |c|]

>>> .join([
'a,b,c'

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

31

Basic I/O

Get Input with input()
. Pass it a prompt string
- It will return the user’s input as a string
- You can convert the returned string to

the data type you need int(), float(), etc.

>>>
abc

>>> 1 = (“Enter a Number:)

Enter a Number: 1
>>> (1)
1

Hmm
Cisco

Display Output with print()
. Can pass multiple values

- It will concatenate those values with
separators in between (default =
spaces)

- It will add (by default) a newline (\n’) to
the end

Conditionals

Syntax: Comparison Operators:
if expressionl:
statements.. Less than <
elif expression?: Greater than >
ol Se_.s'ta rements.. Less than or equal to <=
statements... Greater than or equal to >=
v Indentation is important! Equal ==
_ Not Equal 1=
v 4 spaces indent recommended Contains element in
v You can nest if statements Combine expressions with: and, or

Negate with: not

Hmm
Cisco

el
CISCO [lWI © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 33

Conditionals | Examples

>> b = 5 >>> words =
>> if b < 0: >>> if in words:
.. ¢ ¢
. elif b == 0: ... elif in words:
.. ¢ ¢
. elif b > 0: ..
(words contains

Bar
. else:

(

b is greater than zero

e
Cisco

el
CISCO [lWI © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 34

Functions | Don’t Repeat Yourself

Modularize your code

« Defining your own Functions

« (optionally) Receive arguments
 (optionally) Return a value

Syntax:

def function_name(arg_names) :

statements...
return value

function_name(arg_values)

e
Cisco

Cbcohbey’

def

(numl, num2):

result = numl + num2
return result

add(3,

>>>

>>>

5)

O:

(

>>> say_hello()

Hello!

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

35

Data Structures / Collection Data Types

Name Notes Example

type()

Tist « Ordered list of items [fa’, 1, 18.2]
« Items can be different data types
« Can contain duplicate items
* Mutable (can be changed after created)

tuple « Just like a list; except: (‘a’, 1, 18.2)
« Immutable (cannot be changed)

dictionary « Unordered key-value pairs {“apples”: 5,

dict « Keys are unique; must be immutable “pears”: 2,

« Keys don’t have to be the same data type
« Values may be any data type

“oranges”: 9}

CISCO

Cisco [l l/fl

© 2019 Cisco an

d/or its affiliates. All rights reserved. Cisco Public

36

Working with Collections

Name | Creating Accessing Updating
type() Indexing
Tlist 1 =1[a’, 1, 18.2] | >>> 1[2] >>> 1[2] = 20.4

18.2 >>> |

[‘a’, 1, 20.4]

tuple t=(a’, 1, 18.2) | >>> t[0] You cannot update tuples after they have been

‘a’ created.
dict d = {“apples”: 5, >>> d[“pears”] >>> d[“pears”] = 6

“pears”: 2, 2 >>> d

“oranges”: 9}

{"“apples”: 5, “pears”: 6, “oranges”:
9}

Hmm
CiIsco

Cbcohbzy’

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

37

Dictionary Methods

Some useful dictionary methods:

{}.items()
{}.keysQ
{}.values()

There are manv more!

CISCO

Cisco [l Vf:

>>> d = { : 1,

>>> d.items ()
dict_items([('a’,1),

>>> d.keys()
dict_keys(['a’,

>>> d.values()

1 2,

lbl’ lcl])

dict_values([1, 2, 3])

© 2019 Cisco an

d/or its affiliates. All rights reserve

: 3%

d. Cisco Public

('b’,2), ('c',30DD

38

https://docs.python.org/3/library/stdtypes.html#dict

Loops

Iterative Loops Conditional Loops
for individual_item in while Jogical_expression:
iterator:

statements.. statements...

>> 1 =0
>>> while True:
(i)

1 +=1

>>> names = [,
>>> for name in names:
(name)

chris

iftach
jay

Cisco

vl
CISCO [lWI © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 39

Unpacking

Q: What if you wanted to break
out a collection to separate
variables?

A: Unpack them!

Hmm
CiIsco

Cisco [l l/f/

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

40

Iterating through a Dictionary

. Use the dictionary .1tems () method, Method returns dictionary
which returns a “list of tuples” items as a list of (key,

. Unpack each tuple into variable value) tuples, which the
names of your choosing to use within for loop will iteratively

your block of statements unpack into your
variable names.

>>> for fruit, quantity in fruit.items():
({} {}.".format(quantity, fruit))

You have 5 apples.

You have 2 pears.
You have 9 oranges.

Hmm
CiIsco

Go Forth and CODE!

© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 47

Questions?

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Want to Learn More About Python?

stfrer]es Networkin
CISCO Academy

Courses / Programming Courses / PCAP: Programming Essentials In Python

PCAP: Programming Essentials
in Python

By Cisco Networking Academy in collaboration with nEL

Enroll at: http://bit.ly/pythonessentialscourse

king My NetAcad Courses Careers About Us Q English K$

Free online self-
paced course
70 Hours

Level:
Intermediate

NoO prior
knowledge of
programming is
required

http://bit.ly/pythonessentialscourse

Oct’18 Networking with Programmability is Easy

Oct’18 A Network Engineer in the Programmable Age
Nov’'18 Software Defined Networking and Controllers
Jan’19 Adding API Skills to Your Networking Toolbox
Feb’19 The New Toolbox of a Networking Engineer

) Mar’19 Program Networking Devices using their APIs
Apr'19 Before, During, and After a Security Attack
May’19 Play with Linux & Python on Networking Devices
Jun’19 Automate your Network with a Bot

All Series Detalils can be Found @ http://bit.ly/devnet2

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

http://bit.ly/devnet2

